Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression and distribution of thiol-regulating enzyme glutaredoxin 2 (GRX2) in porcine ocular tissues.

Identifieur interne : 000559 ( Main/Exploration ); précédent : 000558; suivant : 000560

Expression and distribution of thiol-regulating enzyme glutaredoxin 2 (GRX2) in porcine ocular tissues.

Auteurs : Bijaya Upadhyaya [États-Unis] ; Xiaoli Tian [États-Unis] ; Hongli Wu [États-Unis] ; Marjorie F. Lou [États-Unis]

Source :

RBID : pubmed:25479045

Descripteurs français

English descriptors

Abstract

Glutaredoxin2 (Grx2) is a mitochondrial isozyme of the cytosolic glutaredoxin1 (thioltransferase or TTase). Both belong to the large oxidoreductase family and play an important role in maintaining thiol/disulfide redox homeostasis in the cells. Grx2 is recently found in the lens where its activities of disulfide reductase and peroxidase, similar to TTase, can protect the lens against oxidative stress. Since other eye tissues are also highly sensitive to oxidative stress, and TTase's distribution in the eye is known, we focused on this study by investigating the Grx2 distribution in the ocular tissues in comparison to the lens. Fresh porcine eyes were dissected into cornea, iris, ciliary body, the lens, vitreous humor, retina, and optic nerve. Each tissue (pooled from three eyes) was homogenized and processed for mitochondrial isolation. The mitochondrial fraction was analyzed for Grx2 protein using Western blotting with anti-Grx2 antibody, and Grx2 activity using the published procedure. The eye tissues were also measured for Grx2 mRNA expression by RT-PCR with GAPDH as the control. Grx2-rich mouse liver and purified recombinant mouse Grx2 were used as positive controls for the above analyses. It was found that Grx2 was present in all the tested ocular tissues, except vitreous humor. In comparison with the mouse liver, the protein levels of Grx2 in porcine ciliary body and the lens were 27-fold and 0.75-fold, respectively. Comparing to the lens, Grx2 protein was highest in the ciliary body (13.5-fold), followed by retina (9.2-fold), iris and optic nerve (2-fold), and cornea (1.2-fold). Enzyme activity assays showed that the retina had the highest Grx2 specific activity (3.9 mU/mg protein), followed by ciliary body (3.1 mU/mg), the lens (0.58 mU/mg), and optic nerve (0.32 mU/mg). Grx2 gene expression in these ocular tissues was further confirmed by RT-PCR analysis. Grx2 mRNA expression showed the highest in ciliary body, followed by retina, optic nerve, cornea, iris, and the lens. No Grx2 mRNA, protein or enzyme activity could be found in the vitreous humor. The results indicate that Grx2 level was higher in eye tissues rich in vasculature and mitochondria (i.e. ciliary body and retina), corroborating with the levels of mRNA expression and Grx2 activity. The rich presence of Grx2 in these tissues is also consistent with their known sensitivity to oxidative stress.

DOI: 10.1016/j.exer.2014.12.004
PubMed: 25479045
PubMed Central: PMC4276450


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression and distribution of thiol-regulating enzyme glutaredoxin 2 (GRX2) in porcine ocular tissues.</title>
<author>
<name sortKey="Upadhyaya, Bijaya" sort="Upadhyaya, Bijaya" uniqKey="Upadhyaya B" first="Bijaya" last="Upadhyaya">Bijaya Upadhyaya</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Health and Nutritional Sciences, South Dakota State University, Brookings, SD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Health and Nutritional Sciences, South Dakota State University, Brookings, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Xiaoli" sort="Tian, Xiaoli" uniqKey="Tian X" first="Xiaoli" last="Tian">Xiaoli Tian</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health and Science Center, Fort Worth, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health and Science Center, Fort Worth, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE, USA. Electronic address: mlou1@unl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25479045</idno>
<idno type="pmid">25479045</idno>
<idno type="doi">10.1016/j.exer.2014.12.004</idno>
<idno type="pmc">PMC4276450</idno>
<idno type="wicri:Area/Main/Corpus">000572</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000572</idno>
<idno type="wicri:Area/Main/Curation">000572</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000572</idno>
<idno type="wicri:Area/Main/Exploration">000572</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression and distribution of thiol-regulating enzyme glutaredoxin 2 (GRX2) in porcine ocular tissues.</title>
<author>
<name sortKey="Upadhyaya, Bijaya" sort="Upadhyaya, Bijaya" uniqKey="Upadhyaya B" first="Bijaya" last="Upadhyaya">Bijaya Upadhyaya</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Health and Nutritional Sciences, South Dakota State University, Brookings, SD, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Health and Nutritional Sciences, South Dakota State University, Brookings, SD</wicri:regionArea>
<placeName>
<region type="state">Dakota du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tian, Xiaoli" sort="Tian, Xiaoli" uniqKey="Tian X" first="Xiaoli" last="Tian">Xiaoli Tian</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health and Science Center, Fort Worth, TX, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health and Science Center, Fort Worth, TX</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
<affiliation wicri:level="2">
<nlm:affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE, USA. Electronic address: mlou1@unl.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE</wicri:regionArea>
<placeName>
<region type="state">Nebraska</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Experimental eye research</title>
<idno type="eISSN">1096-0007</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Blotting, Western (MeSH)</term>
<term>Ciliary Body (enzymology)</term>
<term>Gene Expression Regulation, Enzymologic (physiology)</term>
<term>Glutaredoxins (genetics)</term>
<term>Lens, Crystalline (enzymology)</term>
<term>Mice (MeSH)</term>
<term>Mitochondria (enzymology)</term>
<term>Mitochondria, Liver (enzymology)</term>
<term>RNA, Messenger (genetics)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Retina (enzymology)</term>
<term>Sequence Homology (MeSH)</term>
<term>Swine (MeSH)</term>
<term>Vitreous Body (enzymology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>Animaux (MeSH)</term>
<term>Corps ciliaire (enzymologie)</term>
<term>Corps vitré (enzymologie)</term>
<term>Cristallin (enzymologie)</term>
<term>Glutarédoxines (génétique)</term>
<term>Mitochondries (enzymologie)</term>
<term>Mitochondries du foie (enzymologie)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (physiologie)</term>
<term>Rétine (enzymologie)</term>
<term>Similitude de séquences (MeSH)</term>
<term>Souris (MeSH)</term>
<term>Suidae (MeSH)</term>
<term>Technique de Western (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Corps ciliaire</term>
<term>Corps vitré</term>
<term>Cristallin</term>
<term>Mitochondries</term>
<term>Mitochondries du foie</term>
<term>Rétine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Ciliary Body</term>
<term>Lens, Crystalline</term>
<term>Mitochondria</term>
<term>Mitochondria, Liver</term>
<term>Retina</term>
<term>Vitreous Body</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Enzymologic</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Blotting, Western</term>
<term>Mice</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Sequence Homology</term>
<term>Swine</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Similitude de séquences</term>
<term>Souris</term>
<term>Suidae</term>
<term>Technique de Western</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutaredoxin2 (Grx2) is a mitochondrial isozyme of the cytosolic glutaredoxin1 (thioltransferase or TTase). Both belong to the large oxidoreductase family and play an important role in maintaining thiol/disulfide redox homeostasis in the cells. Grx2 is recently found in the lens where its activities of disulfide reductase and peroxidase, similar to TTase, can protect the lens against oxidative stress. Since other eye tissues are also highly sensitive to oxidative stress, and TTase's distribution in the eye is known, we focused on this study by investigating the Grx2 distribution in the ocular tissues in comparison to the lens. Fresh porcine eyes were dissected into cornea, iris, ciliary body, the lens, vitreous humor, retina, and optic nerve. Each tissue (pooled from three eyes) was homogenized and processed for mitochondrial isolation. The mitochondrial fraction was analyzed for Grx2 protein using Western blotting with anti-Grx2 antibody, and Grx2 activity using the published procedure. The eye tissues were also measured for Grx2 mRNA expression by RT-PCR with GAPDH as the control. Grx2-rich mouse liver and purified recombinant mouse Grx2 were used as positive controls for the above analyses. It was found that Grx2 was present in all the tested ocular tissues, except vitreous humor. In comparison with the mouse liver, the protein levels of Grx2 in porcine ciliary body and the lens were 27-fold and 0.75-fold, respectively. Comparing to the lens, Grx2 protein was highest in the ciliary body (13.5-fold), followed by retina (9.2-fold), iris and optic nerve (2-fold), and cornea (1.2-fold). Enzyme activity assays showed that the retina had the highest Grx2 specific activity (3.9 mU/mg protein), followed by ciliary body (3.1 mU/mg), the lens (0.58 mU/mg), and optic nerve (0.32 mU/mg). Grx2 gene expression in these ocular tissues was further confirmed by RT-PCR analysis. Grx2 mRNA expression showed the highest in ciliary body, followed by retina, optic nerve, cornea, iris, and the lens. No Grx2 mRNA, protein or enzyme activity could be found in the vitreous humor. The results indicate that Grx2 level was higher in eye tissues rich in vasculature and mitochondria (i.e. ciliary body and retina), corroborating with the levels of mRNA expression and Grx2 activity. The rich presence of Grx2 in these tissues is also consistent with their known sensitivity to oxidative stress. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25479045</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1096-0007</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>130</Volume>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Experimental eye research</Title>
<ISOAbbreviation>Exp Eye Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression and distribution of thiol-regulating enzyme glutaredoxin 2 (GRX2) in porcine ocular tissues.</ArticleTitle>
<Pagination>
<MedlinePgn>58-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.exer.2014.12.004</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0014-4835(14)00321-2</ELocationID>
<Abstract>
<AbstractText>Glutaredoxin2 (Grx2) is a mitochondrial isozyme of the cytosolic glutaredoxin1 (thioltransferase or TTase). Both belong to the large oxidoreductase family and play an important role in maintaining thiol/disulfide redox homeostasis in the cells. Grx2 is recently found in the lens where its activities of disulfide reductase and peroxidase, similar to TTase, can protect the lens against oxidative stress. Since other eye tissues are also highly sensitive to oxidative stress, and TTase's distribution in the eye is known, we focused on this study by investigating the Grx2 distribution in the ocular tissues in comparison to the lens. Fresh porcine eyes were dissected into cornea, iris, ciliary body, the lens, vitreous humor, retina, and optic nerve. Each tissue (pooled from three eyes) was homogenized and processed for mitochondrial isolation. The mitochondrial fraction was analyzed for Grx2 protein using Western blotting with anti-Grx2 antibody, and Grx2 activity using the published procedure. The eye tissues were also measured for Grx2 mRNA expression by RT-PCR with GAPDH as the control. Grx2-rich mouse liver and purified recombinant mouse Grx2 were used as positive controls for the above analyses. It was found that Grx2 was present in all the tested ocular tissues, except vitreous humor. In comparison with the mouse liver, the protein levels of Grx2 in porcine ciliary body and the lens were 27-fold and 0.75-fold, respectively. Comparing to the lens, Grx2 protein was highest in the ciliary body (13.5-fold), followed by retina (9.2-fold), iris and optic nerve (2-fold), and cornea (1.2-fold). Enzyme activity assays showed that the retina had the highest Grx2 specific activity (3.9 mU/mg protein), followed by ciliary body (3.1 mU/mg), the lens (0.58 mU/mg), and optic nerve (0.32 mU/mg). Grx2 gene expression in these ocular tissues was further confirmed by RT-PCR analysis. Grx2 mRNA expression showed the highest in ciliary body, followed by retina, optic nerve, cornea, iris, and the lens. No Grx2 mRNA, protein or enzyme activity could be found in the vitreous humor. The results indicate that Grx2 level was higher in eye tissues rich in vasculature and mitochondria (i.e. ciliary body and retina), corroborating with the levels of mRNA expression and Grx2 activity. The rich presence of Grx2 in these tissues is also consistent with their known sensitivity to oxidative stress. </AbstractText>
<CopyrightInformation>Copyright © 2014 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Upadhyaya</LastName>
<ForeName>Bijaya</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Health and Nutritional Sciences, South Dakota State University, Brookings, SD, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Xiaoli</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Hongli</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health and Science Center, Fort Worth, TX, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lou</LastName>
<ForeName>Marjorie F</ForeName>
<Initials>MF</Initials>
<AffiliationInfo>
<Affiliation>School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA; Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE, USA. Electronic address: mlou1@unl.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 EY010595</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 EY10595</GrantID>
<Acronym>EY</Acronym>
<Agency>NEI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Exp Eye Res</MedlineTA>
<NlmUniqueID>0370707</NlmUniqueID>
<ISSNLinking>0014-4835</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015153" MajorTopicYN="N">Blotting, Western</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002924" MajorTopicYN="N">Ciliary Body</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007908" MajorTopicYN="N">Lens, Crystalline</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008930" MajorTopicYN="N">Mitochondria, Liver</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012160" MajorTopicYN="N">Retina</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017385" MajorTopicYN="N">Sequence Homology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014822" MajorTopicYN="N">Vitreous Body</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Disulfide reductase</Keyword>
<Keyword MajorTopicYN="N">Glutaredoxin2</Keyword>
<Keyword MajorTopicYN="N">Mitochondria</Keyword>
<Keyword MajorTopicYN="N">Ocular tissues</Keyword>
<Keyword MajorTopicYN="N">Oxidative stress</Keyword>
<Keyword MajorTopicYN="N">Protein-S-S-glutathione</Keyword>
<Keyword MajorTopicYN="N">Thiol/disulfide regulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>10</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>11</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>12</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25479045</ArticleId>
<ArticleId IdType="pii">S0014-4835(14)00321-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.exer.2014.12.004</ArticleId>
<ArticleId IdType="pmc">PMC4276450</ArticleId>
<ArticleId IdType="mid">NIHMS648600</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2001 Aug 10;276(32):30374-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11397793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 13;276(28):26269-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11297543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 2003 Sep;44(9):3967-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Nov;17(14):2088-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1970 Aug 15;227(5259):680-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5432063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1977 May 26;497(3):641-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">889879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stroke. 1979 Jul-Aug;10(4):437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">505482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1980 Mar 1;185(3):545-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6770846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Aug 25;264(24):13963-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2668278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1990 Jun;50(6):813-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2373173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 Jun 25;30(25):6088-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1829380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Invest Ophthalmol Vis Sci. 1998 Mar;39(3):476-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9501856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Feb 18;327(3):774-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15649413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8168-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2005 Jul;85(3):845-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2005 Oct 11;173(8):861-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 2006 Oct;83(4):783-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16712839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Dec;20(14):2645-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17065220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Nov;9(11):2027-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17845131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Oct;1797(10):1705-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20547138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Retin Eye Res. 2011 Jan;30(1):1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20801226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Eye Res. 1996 Oct;63(4):433-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Vis. 1999 Nov 3;5:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10562656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Retin Eye Res. 2003 Sep;22(5):657-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12892645</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Dakota du Sud</li>
<li>Nebraska</li>
<li>Texas</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Dakota du Sud">
<name sortKey="Upadhyaya, Bijaya" sort="Upadhyaya, Bijaya" uniqKey="Upadhyaya B" first="Bijaya" last="Upadhyaya">Bijaya Upadhyaya</name>
</region>
<name sortKey="Lou, Marjorie F" sort="Lou, Marjorie F" uniqKey="Lou M" first="Marjorie F" last="Lou">Marjorie F. Lou</name>
<name sortKey="Tian, Xiaoli" sort="Tian, Xiaoli" uniqKey="Tian X" first="Xiaoli" last="Tian">Xiaoli Tian</name>
<name sortKey="Wu, Hongli" sort="Wu, Hongli" uniqKey="Wu H" first="Hongli" last="Wu">Hongli Wu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000559 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000559 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25479045
   |texte=   Expression and distribution of thiol-regulating enzyme glutaredoxin 2 (GRX2) in porcine ocular tissues.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25479045" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020